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2nd Team Work
TEAM WORK INSTRUCTIONS

Dear group,

1. Collect time series data of prices of TWO risky financial assets (stocks,
bonds, exchange rates,. . .). The time series should have daily frequency.
Indicate the most detailed information about your source. These two time
series should be used to answer ALL the questions of this report.

2. 100% coincidence of the selected time series between groups is not allowed.
Moreover, you cannot select time series discussed during the lectures or in
the lecture notes. To avoid these situations, send the name/description, data-
file in EViews format and source of your two time series to nsobreira@iseg.ulisboa.pt
until 26/11 and wait for my approval. The first group that sends all this
information wins the exclusive right to analyze that time series. So it is
recommended that the group sends this information as soon as possible.

3. The written report has a maximum of 30 pages (not counting appendices,
table of contents, index and bibliographic references). Hence all relevant
figures and tables should be prepared as an Appendix and cited in the written
report.

4. The report should be written in a standard format: the font should be Times
New Roman, size 12 and lines should be double-spaced.

5. The office hours for this Team Work are 27/11, 04/12 and 11/12 at 5 PM.
However you need to inform the instructor in advance to nsobreira@iseg.ulisboa.pt.

6. The delivery date is 14th December 10:00 AM. Send the written report to
nsobreira@iseg.ulisboa.pt with the name Group XX - Team Work 2.

7. One hard copy of the written report should be delivered to the instructor at
the beginning of the class that follows the delivery date.

8. Any case of plagiarism is strictly forbidden and will be dealt with in ac-
cordance with ISEG Masters’ regulations.
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GARCH models and Value-at-Risk

1 Introduction
Any investment in financial markets has several types of risks. These may be

summarized in four main types: operational risk, credit risk, liquidity risk and
market risk.

This exercise deals with market risk measurement. The market risk has to
do with daily stock price flutuations that are due to general factors affecting the
financial markets. Given its importance in finance, there is a vast amount of rese-
arch on issues related with market risk measurement. Popular methodologies to
measure market risk include sensitivity analysis, scenario analysis, stress testing
and downside risk measures.

The objective of this exercise is to obtain the Value-at-Risk (VaR) for TWO
financial assets. The VaR is a downside market risk measure widely used in fi-
nancial institutions. The econometric approach should be used to compute the
VaR. The results obtained will be compared with other available methodologies.
With the econometric approach, we make use of return and volatility forecasts of
a given ARMA-GARCH model to obtain the VaR.

The outline of this exercise sheet is as follows. Section 2 introduces VaR
under a probabilistic framework. Section 3 discusses VaR calculation from an
econometric approach. Sections 2 and 3 rely heavily on Chapter 7 of Tsay (2005).
In Section 4 you may find the description of the exercise.

2 Value-at-Risk1

The VaR is a measure of maximal potential change in the value of an asset (or
portfolio of assets) over a period of time for a given probability. Given that the
VaR is a measure of market risk, we are mainly concerned with negative changes,
that is, losses. Hence, the VaR represents the maximal potential loss with proba-
bility 1 − p over a specified time horizon h, that is, between periods t and t + h.
In other words, the asset holder expects to incur in a loss greater or equal than the
VaR with probability p (p is a small number) over the time horizon h.

1The following text introduces Value-at-Risk from the perspective of the holder of a long
financial position. It is straightforward to modify it for the short financial position’s perspective.

2



ISEG – School of Economics & Management
Financial Forecasting Nuno Sobreira

Example 1. Bank A holds a long financial position of 10 Million Euros in stocks
of firm B. Assume that the daily log returns of firm B follow a normal distribution
with mean zero and standard deviation 2.2%. Obtain the 5% VaR or the VaR at
95% confidence level.

Answer: We have that rt ∼ N (µ = 0, σ2 = 2.22%) where rt denotes the log
returns of firm B. Hence, the log returns do not drop more than 1.645 × 2.2% =
3.619% with 95% probability over a 1 day period:

P (rt ≥ a) = 0.95⇔ P

 rt
2.2︸︷︷︸
∼N(0,1)

≥ a

2.2

 = 0.95⇔ a

2.2
= −1.645

⇔ a = −1.645× 2.2 = −3.619% (1)

Alternatively:

P (rt ≤ a) = 0.05⇔ P

 rt
2.2︸︷︷︸
∼N(0,1)

≤ a

2.2

 = 0.05⇔ a

2.2
= −1.645

⇔ a = −1.645× 2.2 = −3.619% (2)

Notice that −1.645 is the 5% quantile of the standard normal distribution. Given
that the VaR is interpreted as a measure of maximal potential loss, the VaR of the
log returns is the quantity 3.619% (and not −3.619%).

The VaR is usually not presented in log returns but in cash amount. In this
example, the 5% VaR or VaR at 95% confidence level is obtained as:

V aR5% = Value in Euros ×V aR(log returns) = 10.000.000e×0.03619 = 361900e

We conclude that we have a 1-day maximal potential loss of 361900e with
95% probability. In other words, with only 5% probability we have a loss of
361900e or higher if we hold stocks of firm B for 1 day.

We now present the general VaR definition. Suppose we are at period t and
interested in measuring the risk of a financial position for the next h periods. Let
V (t) and V (t + h) be the asset values of the financial position at periods t and
t+ h. The change of value for this financial position from t to t+ h is then given
by:

∆V (h) = V (t+ h)− V (t)
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Moreover, given that ∆V (h) is a random variable, we also introduce the cumula-
tive distribution function of ∆V (h) which we denote as Fh. Formally, Fh(a) =
P (∆V (h) ≤ a) , a ∈ R. We assume that Fh is a symmetric distribution function.

Now we can define the VaR of a long financial position over time horizon h
with probability p, 0 < p < 1, as the (1− p)th quantile of the distribution Fh:

P (∆V (h) ≤ −V aR) = p⇔ P (∆V (h) ≥ V aR) = p⇔ Fh (V aR) = 1− p

Remarks:

1. The VaR depends on the specified probability p and time horizon h. To
highlight this dependence we will denote the 100p% VaR as V aR100p%. In
the example, p = 0.05 and h = 1.

2. The VaR is measured in cash value (Euros, dollars,...). Usually we start by
assuming a distribution for the log returns, for example, a Normal or a t-
student distribution. The VaR is initially obtained over the quantiles of the
distribution of log returns (see equations (1) or (2), for example). Given that
log returns are approximately equal to percentage changes in the value of
the financial position, we obtain the VaR of the financial position in cash
value as:

V aR = Value of the financial position× V aR(of log returns)

In the example we have Value of the financial position = 10.000.000e and
V aR(of log returns) = 0.03619.
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3 VaR and ARMA-GARCH models
Financial log returns either exhibit no serial correlation or autocorrelations of

small magnitude. In general, time dependence of log returns emerges at higher
moments (variance). In particular, an important stylized fact of log returns is
volatility clustering. A class of models very popular for being capable to address
volatility clustering is the ARMA(p,q)-GARCH(m,n) class:

rt = µt + εt, εt = σtzt, zt
iid∼ (0, 1)

σ2
t = α0 +

m∑
i=1

αiε
2
t−i +

n∑
j=1

βjσ
2
t−j

GARCH models enjoy such popularity because they are able to mimic the most
important regularities of financial time series with reasonable accuracy. Moreo-
ver, it is possible to capture other empirically relevant features of the data with
simple variants of the standard GARCH model and/or the inclusion of additional
explanatory variables.

The ARMA-GARCH model can be used to calculate the VaR in the following
way. Suppose that εt ∼ N (0, 1). In that case, the distribution of rT+1 conditional
on the information available until moment T is:

rT+1|IT ∼ N
(
r̂T+1|T , σ̂

2
T+1|T

)
where r̂T+1|T and σ̂T+1|T are the one-step ahead forecasts of the return and vari-
ance, respectively. Then, the 100p% VaR for the log returns is:

V aR100p% = r̂T+1|T + z1−pσ̂T+1|T

where z1−p is the (1 − p)th quantile of the standard normal distribution. For
example, the 5% VaR is:

V aR5% = r̂T+1|T + 1.645σ̂T+1|T

On the other hand, if one assumes that the error term follows a Student-t distribu-
tion, εt ∼ tυ, we have that:

V aR100p% = r̂T+1|T +
tυ (1− p) σ̂T+1|T√

υ/ (υ − 2)
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where tυ (1− p) is the (1− p)th quantile of Student t-distribution with υ degrees
of freedom.

Consider now the multiperiod VaR. From the properties of log returns, we
have that the log return from time T + 1 until T + k (inclusive) is:

rT [k] = rT+1 + rT+2 + . . .+ rT+K

where rT [k] denotes the k−period log return. The following proposition summa-
rizes the multiperiod VaR calculations with ARMA-GARCH models:

Proposition 1. The multiperiod VaR with ARMA-GARCH models is obtained as
follows:

1. The k−period log return forecast is:

r̂T [k] = r̂T+1|T + r̂T+2|T + . . .+ r̂T+k|T

where r̂T+s|T is the s−steps ahead forecast at origin T .

2. The forecasting error of r̂T [k] is given by:

εT [k] = εT+k + (1 + ψ1) εT+k−1 + . . .+ (1 + ψ1 + . . .+ ψk−1) εT+1

where ψi is the ith coefficient of the MA representation of the selected ARMA
model for the log returns.

3. The volatility forecast for the k−period log return is:

V ar (εT [k] |IT ) = σ̂2
T+k|T+(1 + ψ1)

2 σ̂2
T+k−1|T+. . .+(1 + ψ1 + . . .+ ψk−1)

2 σ̂2
T+1|T

where σ̂2
T+s|T is the s−steps ahead volatility forecast at origin T .

4. If we assume that rT [k] ∼ N (0, 1) then:

rT [k] |IT ∼ N (r̂T [k] , V ar (εT [k] |IT ))

The 100p% VaR for the k−period log returns is constructed as:

V aR100p% = rT [k] + z1−p
√
V ar (εT [k] |IT )

5. Similarly, we obtain the 100p% multiperiod VaR assuming that εt ∼ tυ:

V aR100p% = rT [k] +
tυ (1− p)

√
V ar (εT [k] |IT )√

υ/ (υ − 2)
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4 Exercise

Question 1 (13 (or 15) points)

(a) Discuss the time series History: when do you observe a higher volatility?
What were the most relevant events that affected the time series behaviour?

From now on, consider time series data from the last 5 years
and answer the following questions. Yet, if you find problems in
finding a well specified ARIMA-GARCH model feel free to use
a different sample period (last 4 or 6 years, for example). Here
it may be useful to use the option “Sample" in EViews. Please
mention the sample period in the written report and justify your
choice.

(b) Obtain the log returns and plot the time series graph of prices and log returns.
Obtain the correlogram and descriptive statistics for prices and log returns.
Comment on the distributional and dynamical properties of the data (mean,
volatility, skewness, kurtosis, stationarity, outliers,. . .). Which stylized facts
about financial returns you observe in the data?

(c) Apply the Augmented Dickey-Fuller (ADF) test to the log prices. Describe
in detail the conclusions of the test.

(d) Perform the Box-Jenkins analysis to find the ARMA model that best describes
the log returns. Justify in detail the model building process and correspon-
ding choice.

(e) Obtain the residuals of the ARMA model estimated in item (e). Test for the
presence of ARCH effects. Analyze the time series properties of the squared
residuals and use that information to propose ARMA-GARCH models for the
log returns. Justify in detail your options.

(f) Evaluate the goodness-of-fit of the models. Test for additional GARCH ef-
fects with the ARCH-LM test. Select the ARMA-GARCH model that best
fits the dynamic properties of the log returns. Justify your choice.
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(g) Interpret the EViews output and write explicitly the estimated equation in the
standard mathematical ARMA-GARCH form. Approximate your results to 3
decimal places.

(h) Redo the previous 3 items on the basis of the t-distribution for the error term.
Do you find a better goodness-of-fit than in item (e)?

(i) Choose the estimation sample and the forecast sample for each time series
and obtain the static and dynamic forecasts for both the log returns and vo-
latility. Use the two preferred GARCH specifications. Compare your results
and comment.

(j) For only one of the time series, construct a table with the values obtained
for the 1st and 2nd forecast obtained with the two models. Now explain and
show exactly how these values were obtained. Solve this exercise both for the
dynamic and static forecasts of the volatility (you do not need to show how
the forecasts of rt were obtained).

(k) (Extra 2 points)2 Do you find evidence that the log returns are on average
different from zero? Do you find evidence for leverage effects? Do you find
evidence of risk premia? Estimate the appropriate models and perform the
necessary formal statistical tests to answer these questions. Hint: Chapter 3
from Tsay may be useful.

2These extra points are only eligible if you obtain 13 points or more in the remaining exercises.
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Question 2 (7 points)

The objective of this exercise is to obtain VaR on the basis of different as-
sumptions regarding the ARMA-GARCH process for the log returns. Use both
financial time series to answer the following question.

(a) Suppose that a given firm holds a long financial position of 10 Million Eu-
ros in stocks of the financial asset under analysis. Obtain the VaR for the
next trading day and the next 5 trading days using:

(i) the unconditional moments of an assumed normal distribution (historical
mean and standard deviation)

(ii) a GARCH(1,1) with only a constant in the conditional mean function
and normal errors. Hint: for an ARMA(0,0) model, it is possible to
show that ψi = 0 for every i.

(iii) an AR(1)-GARCH(1,1) model with normal errors. Hint: for a stationary
AR(1) model, it is possible to show that ψi = φi1 for every i.

(iv) an AR(1)-GARCH(1,1) model with Student-t innovations

(v) Another ARMA-GARCH specification choosen by the group. Here you
should choose either a constant or an AR(1) conditional mean function.
For the GARCH specification you may choose a GARCH(m,n) for any
m and n with either normal or student-t innovations. You may also
explore extensions of the standard GARCH model (GARCH-in-mean,
T-GARCH, EGARCH,...). Justify your option.

Explain in detail your calculations. Warning: answers that only present
table(s) with numbers will be ignored. It is required a proper explanation
of how the values were obtained in the written report.
Use 90%, 95% and 99% confidence levels. Compare the VaR estimates obtai-
ned for different models. Comment your findings. What happens to the VaR
when the time horizon increases? What happens to the VaR when we change
to Student-t innovations? What explains these results? Comment any other
differences that you might find relevant.

(b) What difficulties/problems a professional portfolio manager may find with the
use of the econometric approach to obtain the VaR. Motivate your answer.

9



ISEG – School of Economics & Management
Financial Forecasting Nuno Sobreira

References
Tsay, R. S. (2005). Analysis of Financial Time Series, Wiley.

10


